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The need exists for methods to simplify groundwater contaminant transport models.
Reduced-order models are needed in risk assessments for licensing and regulating
long-term nuclear waste repositories. Such models will be used in Monte Carlo
simulations to generate probabilities of nuclear waste migration in aquifers at
candidate repository sites in the United States.

In this feasibility study we focused on groundwater flow rather than contaminant
transport because the flow problem is more simple. A pump-drawdown test is modeled
with a reduced-order set of ordinary differential equations obtained by
differencing the partial differential equation. We determined the accuracy of the
reduced model by comparing it with the analytic solution for the drawrlown test. We
established an accuracy requirement of 2% error at the single observation well and
found that a model with only 21 states satisfied that criterion. That model was
used in an extended Kalman filter with synthesized measurement data from one
observation well to identify transmissivity within 1% error and storaqe coefficient
within 10% error. We used several statistical tests to assess the performance of
the estimator/identifier and found it to be satisfactory for this application.
This feasibility study highlighted problems known to others who have attempted to
apply modern systems methods to hydrological problems and has led to related
research studies at our laboratory.

INTRODUCTION

Lawrence Livermore Laboratory has worked for some time on research for the U.S. Nuclear Regulatory
Connnission (NRC). One of the studies for the NRC has been the Waste Management Proqram. That proqram
supplies technical support to the NRC for making licensing and regulatory decisions for candidate
nuclear waste repository sites under consideration in the United States. Central to that work are
studies in assessing risks of alternate decisions. The proqram has developed a sophisticated network
of models that include all steps in the nuclear waste isolation process and that eventually provide
estimates of dose to man.

On the request of the Waste Management Program, a group in the engineering departments at Livermore
carried out the pilot project that is summarized in this paper in an attempt to lay out a more formal
research program in this area in the future. The scope of this pilot project was intentionally chosen
to be narrow so that fruitful results could be demonstrated. We began by postulating a pump-drawdown
problem where we felt we could mechanize the process of identifying aquifer parameters from drawdown
data through the use of signal-processing techniques. After getting ideas from the literature and
from others in the field, we initiated the study described in what follows. We wanted to demonstrate
the power of modern statistical techniques applied to problems in qroundwater flow and transport. One
of the things we eventually wanted to show was a comparison between what our methods could do and what
is routinely done by geoscientists in the field. For that reason we chose a problem for which the
true answer was known beforehand and one that was familiar to practicing hydrologists.

We modeled what would happen if a Kalman filter based estimator/identifier were used with on-line
measurements from a single observation well to identify aquifer parameters from noisy measurement
data. The whole process involved defining and narrowing the scope of the problem, findinq a
large-scale numerical or analytical model to use as a “truth” model for accuracy comparisons, adoptinq
a method of transforming partial differential equations for groundwater flow into sets of ordinary
differential state equations, implementing estimator/identifiers that used those state equations to
determine the system parameters, assessing the applicability of the methods used, and sugqestinq areas
for future research.

The topic of this paper is germane to the IFIP Working Conference. It is an example of a study that
brought together engineers, scientists, and numerical mathematicians to work on a problem of comnon
interest in the environment, much as does the working conference itself. We only reqret that at the
last minute we found we were unable to present this paper In
final preparation.

*Work performed under the auspices of the U.S. Department of
Laboratory under contract number W-7405-ENG-48.

person, and that it took so long in its

Energy by the Lawrence Livermore

-1-



K. D. PIMENTEL, J. V. CANDY, S. G. AZEVEDO, AND T. A. DOERR

HYDROGEOLOGICAL MODEL DEVELOPMENT

In this section we discuss the development of a hydrogeological model used to determine properties of
a simulated aquifer. This model will be employed in an estimation scheme to identify transmissivity
and storage coefficients.

The pump-drawdown test is a fundamental technique used in aquifer tests to determine hydrogeoloqical
properties. The effect of pumping water from a well at a known rate is measured in distant
observation wells penetrating the aquifer (see Figure 1). The purpose of the test is to determine
relationships among pumping rate, drawdown (lowering of the water table), and time in order to
estimate the desired physical properties from these data.

●

●

Consider developing a mathematical representation of the pumping test depicted in Fiqure 1. we assume
that the aquifer is: (1) confined; (2) of infinite areal extent; (3) homogeneous; (4) isotropic; ant
(5) of uniform thickness. Also, we assume that the wells completely penetrate the aquifer, are of
negligible diameter, and flow is radial. The pump rate is assumed constant.

Bedrock

Figure 1. In an aquifer pump-drawdown test (Theis (lq35), Jacob (lq50), DeWiest (1!?66), Davis
and DeWiest (1966)), the effects of pumping water on the piezometric surface are measured at an
observation well in order to infer the aquifer transmissivity (T) and storaqe coefficient (S).

When the pumping well in the aquifer is operated, water is continuously withdrawn from storage within
the aquifer as the cone of depression in the piezometric surface prowesses radially outward from the
well. This water is released by the compaction of the aquifer and its associated beds, and by the
expansion of the water itself. Assume that the water is released instantaneously with a decline in
head caused by decreasing pore pressure. Then the groundwater flow in polar coordinates is qiven by
(Oavis and DeWiest (1966)): w

w’
where

h(.) =
r=
T=
s=
t=

(+):r[rW] (m/s),

drawdown (m),
radial distance from the pumping well (m),
transmissivity (m3/Pa-s),
coefficient of storaqe (m/Pa),
time (s).

(1)

w

The initial condition for r~O is given by

h(r,O) = ho = O (m).
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Boundary conditions for t~O are defined by

where q = constant (m3/s) is the pumping rate. The groundwater flow equation can be converted to a
finite set of differential-difference equations by approximating with finite differences. Using
central differences, we obtain the following general differential-difference equation:

where each of the states hi in (2) is a function of distance and time, hi ~ h(ri,t). This
expression may be rewritten as

ii
[

= T/S Ci3hi+1 -1-Ci2hi+ Cilhil, forl<i <N,

where

r. + r.
c. =

1 1+1
13 ,

‘i (‘i+l - ‘iJ( ‘i+1 - ‘i-l)

c. =
2

12 9
‘ri+l - ‘i)(ri - ‘i-l)

r: , + r.
c. =r

l-l I

11
.

i(‘i+l - ‘i-l)(ri - ‘i-l)

The boundary conditions are included
a step input of magnitude q/2mT(m).
boundary; therefore, the last node N
greater than that of the observation

Thus we have

The state

(?)

(3)

in the following way. As wO, the pump is included as part of
As W, the pressure is essentially constant at the
is chosen to lie at a distance from the pumpinq well that is much
well.

*
hN=- (+ CN2hN + (+) CN1hN-l ”’.

representation of the groundwater flow equation is given by

1
(T/s)$3h2 - (T/s)c,2h, - (+)cl,qdt), i = 1;

ii = (T/s)ci3hi+1 - (T/s)ci2hi + (T/s)cilhi-l> l<i<N;

-(T/S)~2hN + (T/S) CN,hN-,, i=N.

The coefficients are given by:

1
c13=rl(r2 - r-l) ‘

ah(r,t)

[1
*Actually the boundary condition lim h(r,t) = O is equivalent to the condition lim r ~r = o,

p+.

which is incorporated into the equation for hN (see Azevedo et al. (1980) for details).
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C12 = C13 ‘

Cll = mrl(rj+rl) ‘

~z . ‘N + ‘N-1
~, A a constant+ ,

XrN (rN - ‘N-1)

CN1 = CN2 ‘

cij, j = 1,2,3, are defined in (3) ,

p(t) = unit step function in time.

These equations form a set of first-order ordinary differential equations of the general continuous
state space form:

.

‘t = Ftxt + Gtut”

Discrete measurements are given by: (5)

Y~ = ‘kxk”

In (5), x, u, and y are the n-state, m-input, and p-output vectors and F, G, and H are matrices of
appropriate dimension.

Finally, for this general state-space form in (5), the groundwater flow equation becomes:

~(r,t) = F(r)x(r,t) + g(r)u(r,t),

where

xT(r,t) = [h(rl,t),..., h(rN,t)],

u(r,t) = V(t),

[1F(r) = ~

-$2

C21

c13

-C22 ’23
0

. . .
● ✎ ✎

. ● ✎

c. -Ciz ci3
11

. . .
. . .

● ✎ ✎

0 C(N-1)1-C(N-1)2 C(N-1)3

CN1 “N2

. .

(6)

*

#

a

tThe constant ~ is used to adjust h(rN,t) incorporating the boundary effects using nOfl-UflifOrm
node spacing for r>>rN (see Azevedo et al. (1980) for details).
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Notice that the structure of the F matrix and g vector in (6) hint at the fact that the responses for
this system wi11 be very well-behaved. The F matrix is banded with al1 diaqonal terms negative.
Thus, its poles will all be negative real and the entire system will be absolutely stable in its time
response. The spatlal discretization has led to a system of coupled, f i rst-order 1 aqs, so that system
response wi 11 be very sinple and non-osci 11 atory.

The measurement equation representing the observation wel1 at node rw (w is wel1 node number) is

Yl(‘ Hkxk, (7)

where Hk = e~, a unit row vector. Construction of the standard observability matrix
(Takahashi et al. ( 1970)) shows that the system is completely observable from the observation wel 1 ;

from the drawdown measurements at the wel 1 yk , it is possible to reconstruct the drawdown

‘;e;i’ ‘f ‘he ‘tates lh(ri’t)l”
Before we discuss the state simulation of this groundwater flow equation, consider the closed form
solution of (l). It can be shown (Theis (}935)) that:

m

#T/hT~”&r,t) = h(r, t) = ho - ~
e-6

r2~ T ‘6 “

m

(8)

Ue define the solution expressed in this equation as our “truth” model and use it to compare with the
solution of the state differential-difference equations. A tYPical simulation of the aroundwater flow
model is shown in Figure 2 for the nodes at the pumped and observation wel 1s and at a distant node
that is near the boundary. The parameters for the model used in the simulation are given in
Table 1.

Table 1. Simulation Parameters*

Transmissivity (m3/Pa-s) 1X10-8

Storage Coefficient (m/Pa) 5xlf)-7

Puap Rate (m3/s) 1X10-2

Radial Distance (m)

Observation Wel1 1X102

Boundarv 5X104

*These values were sugqested for this pilot study by L. D. Thorson,
a hydrological systems modeler at LLL.

Simulated drawdown from the spat ially-discretized model yields relative modeling errorst of less
than 2% at node 10, the observationwell, indicating a close agreement between the analytical or
“true” solution and that from the model.

The reader should note that a modeling tradeoff exists: increased accuracy in the finite-difference
solution results only from inclusion of an increased number of nodes in the model. We decided on
using 28 nodes or states in our model based on simulation experiments and it is that level of model
sophistication that resulted in the errors mentioned above.

Essentially we are truncating a spatially infinite system to obtain a finite approximation for
conputer processing. In the infinite system, J& h(r, t) = O for all t, but for the finite

approximate ion, we MUSt COtSStPSit I h(rN+l, t) s O where rN+l < % If this boundar.v node is
situated too close to the observation well, reflections wil1 occur due to poor boundary modelinq.

tThe rel ati Ve error is
%4UE - 4400EL

defined by ~EL z
‘lRUE “

-5-



c

-0.4

-0.8

-1.2

-1.6

-2.0

(

-0.4

-0.8

-1.2

-1.6

-2.0

1

05 10 15 20 25 30 35

-1

-2

-3

-4

-5

-6

I I 1 I t a t

o

s“
.

I

I B 1 I # I I J
05 10 15 20 25 30 35

0 5 10 15 20 25 30 35

Time - d
Time - d

F

Time - d

100 ~

2

c

-2

-4

-8

-12

-16

80

60

40 [

0

S
.-

k
L

ii

20

0

a -20
>.-
+ -40
m

-60
2

-80

-100

05 10 15 20 25 30 35

.

.

! 1 I I 1 1 1 I I -20 I I I I 1 1 !05 10 15

Time

FIGURE 2.

20 25 30 35

-d
05 1“ 15 2“

Time - d

25 30 35

Time - d

Simulated drawdown PLJmDing well, at the
adequately small modeling errors relative to the

near the observation well, and at
analytical solution for a

the boundary node showed
model with only 28 states.

*
●



SIMPLIFIED GROUNDWATER FLOW MODELING: AN APPLICATION OF KALMAN FILTER BASED IDENTIFICATION

Thus, the 28-state model was chosen such that the analytically-derived drawdown at the hypothetical
?8th state is considerably smaller (-2 orders of magnitude) than that at the observation well
node. Then, setting node 28 to zero in the spatially discretized model does not significantly alter
the observation well drawdown.

Figure 3(a) shows the spatial distribution of the drawdown using the discretized model at six
different times. This is a good illustration of the “cone of depression” dynamics for the simulated
aquifer. Notice that the boundary node has very small drawdown values compared to the nodes very near
the pump and at the observation well. Figure 3(b) is a plot of the relative error between analytic
and finite-difference models at the final time (tf = 35 d). Again, reasonable agreement (less than
2% error) between models is observed in the re~ion of the observation well. Details of the modelina
and simulations are discussed in Azevedo et al: (1980).

Pump 10bservation wel 1

(a) o

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

0 200 400 600 800

Radial distance - m

J I I 1 I

20 40 60 80 100 120

Radial distance - m

Figure 3. The cone of depression is shown forming for several times in (a). The relative error
between the true and simulated solutions is shown in (b) at the final time (35 d) of the run shown
in Figure 2.

ESTIMATOR/IDENTIFIER DESIGN

In this section we consider the design of an on-line state and parameter estimator/identifier. We
choose to “reconstruct” the drawdown at various spatial points as well as estimate the aquifer’s
physical parameters. The drawdown estimates could eventually be used as sample points for qroundwater
level contour mapping (Olea (1974)). The general state estimation/parameter identification problem is:

Given: a set of noisy measurements ‘zk~ from a nonlinear dynamical system
If.

h = f(h, 0) + g(u, 0) + We

and discrete-t i me measurement system

‘k
= h(h, 9) + Ve ,

where h, u, z, 6 are the n-state, m-input, p-output, and q-parameter vectors with
associated nonlinear functions f(”), g(”), h(”), and We - fIJ(o, Qe)*,Ve-N(O>Re).

Find: the “best” (minimum variance) estimates ~,$of h and 0 (Gelb (1974)).

Before we discuss the solution to this problem, consider the model of the drawdown measurement
system. We assume that a steel tape is used to measure the drawdown (Davis and Dewiest (1966)).
The measurement model is given by

(9)

*This notation, X -R(x, Cx), means x is distributed normal with mean X and covariance =x.

-7-
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‘k =yk+vk, (lo)

where Vk -N(O, Rk) and yk is defined in (7). A 10% of full scale (-105 m) random error was
simulated as a severe test to investigate how well the estimator/identifier could Perform. Simulated
measurement data is shown in Figure 4.

●

o

-0.5

E

c
0 -1.0

1

-3.0

-3.5
I I I 1 1 1 t

o 25 50 75 100 125 150 175

Time - h

Figure 4. This is simulated noisy measurement data of drawdown at the observation well,
100m from the pumping well, when the level of measurement error is set at 10% of full
scale in the 28-state model (R = 108m2).

In order to solve the on-line state estimation/parameter identification problem of (9), an extended
Kalman filter (EKF) was constructed (Gelb (1974), Jazwinski (1970)); see Castleton and Candy (797q)
for details of our EKF.

The estimator/identifierwas implemented with the necessary Jacobians using data generated by the 78
node model. The model used in the estimator consisted of 21 nodes (states). Initially, the
transmissivity and storage coefficient were “guessed” with large errors (> 100%), and the states and
parameters were estimated well (< 10% relative error). However, in order to conserve computational
time for this feasibility study, the initial errors were selected from a Gaussian distribution with
true mean and 25% error variance, i.e., Xo *

c1
N XTRUE, (0.25XTRljE)2]. An ensemble of ten runs

was generated; a typical member simulation is epicted in Figures 5 and 6. In Fiqure 5, we see the
“reconstructed” drawdown estimates with associated estimation error curves (z:=xTRIjE-!) and
2-sigma bounds predicted by the estimator (i.e., the 95% confidence limits). We see that initially
the drawdown estimates are in larqe error due to the uncertainty in the parameters, but eventually they

-1/2
track. In fact, in steady state the variances are ml s ? x 103m and~~~~ 7 x 102m, which

are quite reasonable. Simultaneous parameter estimates of transmissivity and reciprocal storaqe
coefficient (SR=l/S) are also shown for this run in Figure 6. Here we see the estimates with
associated estimation errors. For this run the estimator performed quite well with relative errors of
approximately 0.3% and 8.5% respectively for T and SR. The ensemble results are shown in Table 3
and the constant probability contour (Azevedo and Gavel (1980)) of the estimates are shown in Fiqure
7. Note that the ellipse has collapsed visually to a lin c ntered at the sample mean due to
scaling. !$The 3-u ellipse contains the sample estimates ( , R) with a probabilityof 0.99.

RESULTS

This pilot study has shown several things, both good and bad. Our initial naivete in the area of
groundwater systems is very apparent from some of the numerical simulations shown in the fiqures. The
standard set of model parameters given us by a colleague at LLL who is experienced in the application

-8-
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Figure 5. Drawdown estimates near the pumping well (hi) and at the observation well (hIO)
were generated with the extended Kalman filter using a 21-state model in the filter. Estimation
errors show that the filter is performing well when using synthesized measurement data from a
28-state model.

Table 3. Identified parameter sample statistics for an ensemble of 10 runs.

TRUE ESTIMATED STANOARD MEAN ERROR % MEAN ERROR MAX

VALUE MEAN
MIN

DEVIATION (B/Mj) ERROR STD ERROR ERROR

PARAMETER (X~UE) (x) (m) (x, %) (u~) (Xmax) (Xmin)

T 1.00000 1.00510 .00070 -.00510 .510 .00070 .00579 .00376

(x1o-8)

SR(=l/S) 2.00000 2.07380 .00319 -.07380 7.380 .00319 .07662 .06754

(x106)
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identification for transmissivity (T) and reciprocal storaqe
extended Kalman filter is tracking T within 1% error and S

of flow models in tight, impervious aquifer systems led to horrendously large drawdown values. Once
we tuned the simulations to yield interesting time histories that looked like they wou?d vrove useful
for parameter identification , we picked a significant measurement error merely for testing purposes

that would correspond to 10% of the full-scale drawdown. But 10% of the kinds of excursions we were
getting yielded an error of 105 m! That is an uncertainty of more than 50 miles for a steel tape
measurement! Clearly this is absurd, but for demonstration purposes, the concepts still all work
out . In hindsight, if we in fact have a system with parameters defined to be in the ranqes of those
in Table 1, then for a constant pumping rate of 1 x 10-2 m3/s, pumpinq on an aquifer with a
miniscule storage coefficient of 5 x 10-7 m/Pa quite naturally leads to tremendously larqe clrawdown
values. Because in order to get 10 1/s out of rock that can store onlY 0.5 ml/Pa, YOU have got to
reduce the piezometric head by tens of thousands of meters.

This initial oversight in parameter values does point up a real problem that has heen seriously
bothering those who are actively working in the nuclear waste repository licensing area. And that is:
how do You even begin to make credible geophysical measurements to determine aquifer-type constants
when the media in which repositories are being designed are by definition non-aquifers? Classical
drawdown and packer tests may prove to be completely useless with systems whose parameters are in the
ranges of those in this study. Notice also that the results indicated in Fiqures 5 through 7 took
months of simulated time due to the tightness of the modeled aquifers; this would be clearly
prohibitive in actual field tests.

-1o-
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‘----7F-.
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./

True value
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Transmissibility - 10-11 ~3,pa-5

Figure 7. The accuracy and precision of the parameter estimates generated from the ensemble
runs are shown in this figure.

It seems as though we have uncovered a problem area in approaching this simple test from the
stochastic systems point of view that the classical hydrogeoloqists have known well for some time.
With the current interest in exotic geologies for siting waste repositories, new geophysical
measurement methods may have to be developed to acquire data because the techniques that were spawned
in studies of free-flowing aquifers were really for entirely different physical regimes and may not
apply. This points up an area where the stochastic systems scientist miqht well come to the aid of
the hydrologist in future research for repository licensing.

The only other major shortcoming of the approach taken here was in the dimensionalit,y of the model
used in the system. Distributed-parameter systems always involve larqe models in order to achieve
rich detail in simulation results. Our problem was perhaps the simplest case and it took a model with
over 20 states to function properly. Once we go to two and three spatial dimensions and variable
parameters, the model dimensionality problems will soon swamp the capabilities of what can be feasibly
done with the extended Kalman filter approach. This result alians with that of McLaughlin (Mel-auqhlin
(1978)).

What this study does show is that parameters can be reasonably identified with this approach Drovided
the models required do not get too complex. The result is encouraging and stimulates US tO look into
allied statistical methods for more realistic applications. Some of these methods we are now
considering include maximum likelihood identification and kriqing techniques.
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